.. role:: xml(code) :language: xml **************************************** Pressure- and velocity-equilibrium model **************************************** Mechanical-equilibrium flows are solved in ECOGEN using the pressure-velocity-equilibrium model (previously named Kapila's model) :cite:`kapila2001`. In the particular case of 2 phases involved and without any extra physics (surface tension, viscosity...), this model reads: .. math:: :nowrap: \begin{equation} \label{system_PUEq} \left\{ {\begin{array}{*{20}{l}} {\cfrac{{\partial {\alpha _1}}}{{\partial t}} + \mathbf{u} \cdot \nabla {\alpha _1}}&{ = K div( \mathbf{u} ),} \\ {\cfrac{{\partial {\alpha _1}{\rho _1}}}{{\partial t}} + div \left( {{\alpha _1}{\rho _1}\mathbf{u}} \right) } &{ = 0 ,} \\ {\cfrac{{\partial {\alpha _2}{\rho _2}}}{{\partial t}} + div \left( {{\alpha _2}{\rho _2}\mathbf{u}} \right)}&{ = 0 ,} \\ {\cfrac{{\partial \rho \mathbf{u}}}{{\partial t}} + div \left( {\rho \mathbf{u} \otimes \mathbf{u} + p \mathbf{I}} \right)}&{ = \mathbf{0} ,} \\ {\cfrac{{\partial \rho E}}{{\partial t}} + div \left( {\left( {\rho E + p} \right) \mathbf{u}} \right)}&{ = 0 ,} \end{array}} \right.\ \end{equation} where subscripts :math:`1` and :math:`2` correspond to one of the two phases, respectively. :math:`\alpha_k` and :math:`\rho_k` are the volume fraction and density of phase :math:`k`. :math:`\rho = \sum\limits_{k} \alpha_k \rho_k`, :math:`\mathbf{u}`, :math:`p`, :math:`E = e + \cfrac{1}{2} \| \mathbf{u} \|^2` and :math:`e = \sum_k \alpha_k \rho_k e_k` are the mixture density, velocity, pressure, total energy and internal energy, respectively. The term :math:`K div (\mathbf{u})` accounts for the differences in the acoustic behavior of both phases or in other words, for the differences in expansion and compression of each phase in mixture regions. :math:`K` is given by: .. math:: :nowrap: \begin{equation*} K = \cfrac{\rho _2 s_2^2 - \rho _1 s_1^2}{\cfrac{\rho _2 s_2^2}{\alpha _2} + \cfrac{\rho _1 s_1^2}{\alpha _1}}, \end{equation*} :math:`s_k` being the speed of sound of phase :math:`k`. This model is solved thanks to the numerical method presented in :cite:`relaxjcp`. **Remark:** This model can also be solved thanks to the numerical method presented in :cite:`schmidmayer2021UEq` (velocity-equilibrium model) with an infinite pressure relaxation. .. toctree:: ./Chap5_2PUEq_1D.rst ./Chap5_2PUEq_2D.rst