Bibliography

References used in this documentation:

[Dha20]

F. Dhaouadi. An augmented lagrangian approach for Euler-Korteweg type equations. PhD thesis, Université de Toulouse, Université Toulouse III-Paul Sabatier, 2020.

[Eul57]

L. Euler. Principes généraux du mouvement des fluides. Mémoires de l'Académie des Sciences de Berlin, pages 274–315, 1757.

[GR09]

C. Geuzaine and J.-F. Remacle. Gmsh: A 3-D finite element mesh generator with built-in pre-and post-processing facilities. International Journal for Numerical Methods in Engineering, 79(11):1309–1331, 2009.

[GZI+79]

S.K. Godunov, A. Zabrodin, M. Ivanov, A. Kraiko, and G. Prokopov. Resolution numerique des problemes multidimensionnels de la dynamique des gaz. Editions Mir, Moscou, 1979.

[HA68]

F. H. Harlow and A. A. Amsden. Numerical calculation of almost incompressible flow. Journal of Computational Physics, 3(1):80–93, 1968.

[Hin83]

A. C. Hindmarsh. ODEPACK, a systematized collection of ODE solvers. Scientific computing, pages 55–64, 1983.

[KMB+01]

A. Kapila, R. Menikoff, J. Bdzil, S. Son, and D. Stewart. Two-phase modeling of DDT in granular materials: Reduced equations. Physics of Fluids, 13:3002–3024, 2001.

[LMNS13]

S. Le Martelot, B. Nkonga, and R. Saurel. Liquid and liquid–gas flows at all speeds. Journal of Computational Physics, 255:53–82, 2013.

[LMSN14]

S. Le Martelot, R. Saurel, and B. Nkonga. Towards the direct numerical simulation of nucleate boiling flows. International Journal of Multiphase Flow, 66:62–78, 2014.

[LMetayerS16]

O. Le Métayer and R. Saurel. The Noble-Abel Stiffened-Gas equation of state. Physics of Fluids, 28(4):046102, 2016.

[Pet83]

L. Petzold. Automatic selection of methods for solving stiff and nonstiff systems of ordinary differential equations. SIAM J. Sci. Stat. Comput., 4(1):136–148, 1983.

[Roe86]

P. L. Roe. Characteristic-based schemes for the Euler equations. Annual review of fluid mechanics, 18(1):337–365, 1986.

[SPB09]

R. Saurel, F. Petitpas, and R.A. Berry. Simple and efficient relaxation methods for interfaces separating compressible fluids, cavitating flows and shocks in multiphase mixtures. Journal of Computational Physics, 228(5):1678–1712, 2009.

[SBC20]

K. Schmidmayer, S. H. Bryngelson, and T. Colonius. An assessment of multicomponent flow models and interface capturing schemes for spherical bubble dynamics. Journal of Computational Physics, 402:109080, 2020.

[SCazeP+21]

K. Schmidmayer, J. Cazé, F. Petitpas, E. Daniel, and N. Favrie. Modelling interactions between waves and diffused interfaces. x, x:x, 2021.

[SPD19]

K. Schmidmayer, F. Petitpas, and E. Daniel. Adaptive Mesh Refinement algorithm based on dual trees for cells and faces for multiphase compressible flows. Journal of Computational Physics, 388:252–278, 2019.

[SPD+17]

K. Schmidmayer, F. Petitpas, E. Daniel, N. Favrie, and S.L. Gavrilyuk. A model and numerical method for compressible flows with capillary effects. Journal of Computational Physics, 334:468–496, 2017.

[SPLMD20]

K. Schmidmayer, F. Petitpas, S. Le Martelot, and E. Daniel. ECOGEN: An open-source tool for multiphase, compressible, multiphysics flows. Computer Physics Communications, 251:107093, 2020. URL: https://doi.org/10.1016/j.cpc.2019.107093, doi:10.1016/j.cpc.2019.107093.

[SX14]

K.M. Shyue and F. Xiao. An Eulerian interface sharpening algorithm for compressible two-phase flow: the algebraic THINC approach. Journal of Computational Physics, 268:326–354, 2014.

[Tor13]

E.F. Toro. Riemann solvers and numerical methods for fluid dynamics: a practical introduction. Springer Science & Business Media, 2013.

[VAVLR97]

G.D. Van Albada, B. Van Leer, and W. Roberts. A comparative study of computational methods in cosmic gas dynamics. In Upwind and High-Resolution Schemes, pages 95–103. Springer, 1997.

[VL74]

B. Van Leer. Towards the ultimate conservative difference scheme. II. Monotonicity and conservation combined in a second-order scheme. Journal of Computational Physics, 14(4):361–370, 1974.

[VL77]

B. Van Leer. Towards the ultimate conservative difference scheme. IV. A new approach to numerical convection. Journal of computational physics, 23(3):276–299, 1977.

[LeMetayerMS04]

O. Le Métayer, J. Massoni, and R. Saurel. Elaborating equations of state of a liquid and its vapor for two-phase flow models. International Journal of Thermal Sciences, 43:265–276, 2004.