Bibliography
References used in this documentation:
- BPS23
L. Biasiori-Poulanges and K. Schmidmayer. A phenomenological analysis of droplet shock-induced cavitation using a multiphase modeling approach. Phys. Fluids, 35(1):013312, 2023.
- CazePD+24
J. Cazé, F. Petitpas, E. Daniel, M. Queguineur, and S. Le Martelot. Modeling and simulation of the cavitation phenomenon in space-engine turbopumps. J. Comp. Phys., 502:112817, 2024.
- CSN17
A. Chiapolino, R. Saurel, and B. Nkonga. Sharpening diffuse interfaces with compressible fluids on unstructured meshes. Journal of Computational Physics, 340:389–417, 2017.
- Dha20
F. Dhaouadi. An augmented lagrangian approach for Euler-Korteweg type equations. PhD thesis, Université de Toulouse, Université Toulouse III-Paul Sabatier, 2020.
- Eul57
L. Euler. Principes généraux du mouvement des fluides. Mémoires de l'Académie des Sciences de Berlin, pages 274–315, 1757.
- GR09
C. Geuzaine and J.-F. Remacle. Gmsh: A 3-D finite element mesh generator with built-in pre-and post-processing facilities. International Journal for Numerical Methods in Engineering, 79(11):1309–1331, 2009.
- GZI+79
S.K. Godunov, A. Zabrodin, M. Ivanov, A. Kraiko, and G. Prokopov. Resolution numerique des problemes multidimensionnels de la dynamique des gaz. Editions Mir, Moscou, 1979.
- HA68
F. H. Harlow and A. A. Amsden. Numerical calculation of almost incompressible flow. Journal of Computational Physics, 3(1):80–93, 1968.
- Hin83
A. C. Hindmarsh. ODEPACK, a systematized collection of ODE solvers. Scientific computing, pages 55–64, 1983.
- KMB+01
A. Kapila, R. Menikoff, J. Bdzil, S. Son, and D. Stewart. Two-phase modeling of DDT in granular materials: Reduced equations. Physics of Fluids, 13:3002–3024, 2001.
- LMNS13
S. Le Martelot, B. Nkonga, and R. Saurel. Liquid and liquid–gas flows at all speeds. Journal of Computational Physics, 255:53–82, 2013.
- LMSN14
S. Le Martelot, R. Saurel, and B. Nkonga. Towards the direct numerical simulation of nucleate boiling flows. International Journal of Multiphase Flow, 66:62–78, 2014.
- LMetayerS16
O. Le Métayer and R. Saurel. The Noble-Abel Stiffened-Gas equation of state. Physics of Fluids, 28(4):046102, 2016.
- MC17
K. Maeda and T. Colonius. A source term approach for generation of one-way acoustic waves in the Euler and Navier–Stokes equations. Wave Motion, 75:36–49, 2017.
- Pet83
L. Petzold. Automatic selection of methods for solving stiff and nonstiff systems of ordinary differential equations. SIAM J. Sci. Stat. Comput., 4(1):136–148, 1983.
- Roe86
P. L. Roe. Characteristic-based schemes for the Euler equations. Annual review of fluid mechanics, 18(1):337–365, 1986.
- SA99
R. Saurel and R. Abgrall. A multiphase Godunov method for compressible multifluid and multiphase flows. Journal of Computational Physics, 150:425–467, 1999.
- SPB09
R. Saurel, F. Petitpas, and R.A. Berry. Simple and efficient relaxation methods for interfaces separating compressible fluids, cavitating flows and shocks in multiphase mixtures. Journal of Computational Physics, 228(5):1678–1712, 2009.
- SBC20
K. Schmidmayer, S. H. Bryngelson, and T. Colonius. An assessment of multicomponent flow models and interface capturing schemes for spherical bubble dynamics. Journal of Computational Physics, 402:109080, 2020.
- SCazeP+23
K. Schmidmayer, J. Cazé, F. Petitpas, E. Daniel, and N. Favrie. Modelling interactions between waves and diffused interfaces. International Journal for Numerical Methods in Fluids, 95(2):215–241, 2023.
- SPD19
K. Schmidmayer, F. Petitpas, and E. Daniel. Adaptive Mesh Refinement algorithm based on dual trees for cells and faces for multiphase compressible flows. Journal of Computational Physics, 388:252–278, 2019.
- SPD+17
K. Schmidmayer, F. Petitpas, E. Daniel, N. Favrie, and S.L. Gavrilyuk. A model and numerical method for compressible flows with capillary effects. Journal of Computational Physics, 334:468–496, 2017.
- SPLMD20
K. Schmidmayer, F. Petitpas, S. Le Martelot, and E. Daniel. ECOGEN: An open-source tool for multiphase, compressible, multiphysics flows. Computer Physics Communications, 251:107093, 2020. URL: https://doi.org/10.1016/j.cpc.2019.107093, doi:10.1016/j.cpc.2019.107093.
- SX14
K.M. Shyue and F. Xiao. An Eulerian interface sharpening algorithm for compressible two-phase flow: the algebraic THINC approach. Journal of Computational Physics, 268:326–354, 2014.
- Tor13
E.F. Toro. Riemann solvers and numerical methods for fluid dynamics: a practical introduction. Springer Science & Business Media, 2013.
- VAVLR97
G.D. Van Albada, B. Van Leer, and W. Roberts. A comparative study of computational methods in cosmic gas dynamics. In Upwind and High-Resolution Schemes, pages 95–103. Springer, 1997.
- VL74
B. Van Leer. Towards the ultimate conservative difference scheme. II. Monotonicity and conservation combined in a second-order scheme. Journal of Computational Physics, 14(4):361–370, 1974.
- VL77
B. Van Leer. Towards the ultimate conservative difference scheme. IV. A new approach to numerical convection. Journal of computational physics, 23(3):276–299, 1977.
- LeMetayerMS04
O. Le Métayer, J. Massoni, and R. Saurel. Elaborating equations of state of a liquid and its vapor for two-phase flow models. International Journal of Thermal Sciences, 43:265–276, 2004.